5G基站电源及储能工况更为复杂
5G基站负载功率更大,负载波动影响更为剧烈,电池放电电流变化更大,削峰时电池放电开始时刻、放电停止时刻需要更为精准,不同站点电池的SOC和SOH不同,需要储能系统调度及时、动态按站响应,固定错峰模型下难以准确计算出批量站点的设置参数,一刀切的做法很容易导致部分站点异常宕站或收益不足。
按用户差异化供备电管理,浙江铁塔建站要求依照负载2G/3G/4G备电3小时、5G备电1小时配置电池容量,不同站点备电时长不统一、相同站点备电时长分梯次,需要智能化算法自动匹配站点削峰填谷策略。
存在大量的电池混搭,人工完成海量数据分析和测算成本太高且难以实现,给不出准确的固定错峰设置参数。
5G建站按需扩容,不同时期的基站电源容量、电池配置和负载大小会发生变化,需要应用数字化工具实时监测站点配置变化,智能化调整削峰填谷参数。
由此可见,在5G基站上直接应用统一固定削峰填谷可能会引起电池过放导致备电不足而产生宕站,或电池欠放导致收益不能最大化,或深度放电导致影响电池寿命和投资资产安全,统一固定模型无法做到节省电费收益最优、资产全生命周期综合收益最优。
5G基站由市电供电,通过直流电源实现交流转直流能源转换,由电池储能系统实现交流停电时电池备电,保障通信设备负载持续供电和业务持续运行。根据每天峰谷电价情况设置错峰用电参数,实现谷价使用外市电(电池储能)、峰价不使用外市电(电池放电)的功能,最终达到降低电费的目的。5G智能电源可利用现网具备循环能力的电池实现错峰用电,也可以在现网备电电池基础上叠加智能锂电实现错峰用电。
5G基站AI削峰填谷需要动态监测电网、负载和电池情况,进行持续数据训练及建模,实现站点能源综合寻优。现网站点动环监控单元检测数量足够,但是每小时上报一次数据实时性不够。5G智能电源可以实现站点数字化精细管理,数据处理能力强大,通信上报响应高达秒级,智能锂电BMS实现高精准度的SOC和SOH预测,这些构成AI削峰填谷站点单元的基本数字化要素。
站点单元数据上报给云端汇流形成数据湖,基于大数据持续训练出AI停电模型、AI负载模型和AI电池模型,支持基于历史数据离线仿真回测,促进迭代提升,支持用户配置一站一策、一时一策多种灵活的省电策略,构建AI动态推理能力。
留言与评论(共有 0 条评论) |